Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The phenomenon known as strong thermal emission velocity enhancement (STEVE) is a narrow optical structure that may extend longitudinally for thousands of kilometers. Initially observed by amateur photographers, it has recently garnered researchers’ attention. STEVE has been associated with a rapid westward flow of ions in the ionosphere, known as subauroral ion drift (SAID). In this work, we investigate three occurrences of STEVE, using data from one of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) ground-based all-sky imagers (ASIs) located at Pinawa, Manitoba, and from the Super Dual Auroral Radar Network (SuperDARN). This approach allows us to verify the correlation between STEVE and SAID, as well as analyze the temporal variation of SAID observed during STEVE events. Our results suggest that the SAID activity starts before the STEVE, and the magnitude of the westward flow decreases as the STEVE progresses toward the end of its optical manifestation.more » « less
-
Abstract Propagation of high‐frequency (HF) radio signals is strongly dependent on the ionospheric electron density structure along a communications link. The ground‐based, HF space weather radars of the Super Dual Auroral Radar Network (SuperDARN) utilize the ionospheric refraction of transmitted signals to monitor the global circulation ofE‐ andF‐region plasma irregularities. Previous studies have assessed the propagation characteristics of backscatter echoes from ionospheric irregularities in the auroral and polar regions of the Earth's ionosphere. By default, the geographic location of these echoes are found using empirical models which estimate the virtual backscattering height from the measured range along the radar signal path. However, the performance of these virtual height models has not yet been evaluated for mid‐latitude SuperDARN radar observations or for ground scatter (GS) propagation modes. In this study, we derive a virtual height model suitable for mid‐latitude SuperDARN observations using 5 years of data from the Christmas Valley East and West radars. This empirical model can be applied to both ionospheric and GS observations and provides an improved estimate of the ground range to the backscatter location compared to existing high‐latitude virtual height models. We also identify a region of overlapping half‐hopF‐region ionospheric scatter and one‐hopE‐region GS where the measured radar parameters (e.g., velocity, spectral width, elevation angle) are insufficient to discriminate between the two scatter types. Further studies are required to determine whether these backscatter echoes of ambiguous origin are observed by other mid‐latitude SuperDARN radars and their potential impact on scatter classification schemes.more » « less
-
Abstract The Super Dual Auroral Radar Network (SuperDARN) is a network of High Frequency (HF) radars that are typically used for monitoring plasma convection in the Earth's ionosphere. A majority of SuperDARN backscatter can broadly be divided into three categories: (a) ionospheric scatter due to reflections from plasma irregularities in the E and F regions of the ionosphere, (b) ground scatter caused by reflections from the ground/sea surface following reflection in the ionosphere, and (c) backscatter from meteor trails left by meteoroids as they enter the Earth's atmosphere. Due to the complex nature of HF propagation and mid‐latitude electrodynamics, it is often not straightforward to distinguish between different modes of backscatter observed by SuperDARN. In this study, we present a new two‐stage machine learning algorithm for identifying different backscatter modes in SuperDARN data. In the first stage, a neural network that “mimics” ray‐tracing is used to predict the probability of ionospheric and ground scatter occurring at a given location along with parameters like the elevation angles, reflection heights etc. The inputs to the network include parameters that control HF propagation, such as signal frequency, season, UT time, and geomagnetic activity levels. In the second stage, the output probabilities from the neural network and actual SuperDARN data are clustered together to determine the category of the backscatter. Our model can distinguish between meteor scatter, 1/2 hop E‐/F‐region ionospheric as well as ground/sea scatter. We validate our model by comparing predicted elevation angles with those measured at a SuperDARN radar.more » « less
-
Abstract We present a statistical investigation of the effects of interplanetary magnetic field (IMF) on hemispheric asymmetry in auroral currents. Nearly 6 years of magnetic field measurements from Swarm A and C satellites are analyzed. Bootstrap resampling is used to remove the difference in the number of samples and IMF conditions between the local seasons and the hemispheres. Currents are stronger in Northern Hemisphere (NH) than Southern Hemisphere (SH) for IMF Bin NH (Bin SH) in most local seasons under both signs of IMF B. For Bin NH (Bin SH), the hemispheric difference in currents is small except in local winter when currents in NH are stronger than in SH. During Band Bin NH (Band Bin SH), the largest hemispheric asymmetry occurs in local winter and autumn, when the NH/SH ratio of field aligned current (FAC) is 1.180.09 in winter and 1.170.09 in autumn. During Band Bin NH (Band Bin SH), the largest asymmetry is observed in local autumn with NH/SH ratio of 1.160.07 for FAC. We also find an explicit Beffect on auroral currents in a given hemisphere: on average Bin NH and Bin SH causes larger currents than vice versa. The explicit Beffect on divergence‐free current during IMF Bis in very good agreement with the Beffect on the cross polar cap potential from the Super Dual Auroral Radar Network dynamic model except at SH equinox and NH summer.more » « less
-
Abstract The sub‐auroral polarization stream (SAPS) is a region of westward high velocity plasma convection equatorward of the auroral oval that plays an important role in mid‐latitude space weather dynamics. In this study, we present observations of SAPS flows extending across the North American sector observed during the recovery phase of a minor geomagnetic storm. A resurgence in substorm activity drove a new set of field‐aligned currents (FACs) into the ionosphere, initiating the SAPS. An upward FAC system is the most prominent feature spreading across most SAPS local times, except near dusk, where a downward current system is pronounced. The location of SAPS flows remained relatively constant, firmly inside the trough, independent of the variability in the location and intensity of the FACs. The SAPS flows were sustained even after the FACs weakened and retreated polewards with a decline in geomagnetic activity. The observations indicate that the mid‐latitude trough plays a crucial role in determining the location of the SAPS and that SAPS flows can be sustained even after the magnetospheric driver has weakened.more » « less
-
Abstract The total solar eclipse over the continental United States on 21 August 2017 offered a unique opportunity to study the dependence of the ionospheric density and morphology on incident solar radiation at different local times. The Super Dual Auroral Radar Network (SuperDARN) radars in Christmas Valley, Oregon, and Fort Hays, Kansas, are located slightly southward of the line of totality; they both made measurements of the eclipsed ionosphere. The received power of backscattered signal decreases during the eclipse, and the slant ranges from the westward looking radar beams initially increase and then decrease after totality. The time scales over which these changes occur at each site differ significantly from one another. For Christmas Valley the propagation changes are fairly symmetric in time, with the largest slant ranges and smallest power return occurring coincident with the closest approach of totality to the radar. The Fort Hays signature is less symmetric. In order to investigate the underlying processes governing the ionospheric eclipse response, we use a ray‐tracing code to simulate SuperDARN data in conjunction with different eclipsed ionosphere models. In particular, we quantify the effect of the neutral wind velocity on the simulated data by testing the effect of adding/removing various neutral wind vector components. The results indicate that variations in meridional winds have a greater impact on the modeled ionospheric eclipse response than do variations in zonal winds. The geomagnetic field geometry and the line‐of‐sight angle from each site to the Sun appear to be important factors that influence the ionospheric eclipse response.more » « less
-
Abstract Evolution of large‐scale and fine‐scale plasmaspheric plume density structures was examined using space‐ground coordinated observations of a plume during the 7–8 September 2015 storm. The large‐scale plasmaspheric plume density at Van Allen Probes A was roughly proportional to the total electron content (TEC) along the satellite footprint, indicating that TEC distribution represents the large‐scale plume density distribution in the magnetosphere. The plasmaspheric plume contained fine‐scale density structures and subauroral polarization streams (SAPS) velocity fluctuations. High‐resolution TEC data support the interpretation that the fine‐scale plume structures were blobs with ∼300 km size and ∼500–800 m/s in the ionosphere (∼3,000 km size and ∼5–8 km/s speed in the magnetosphere), emerging at the plume base and drifting to the plume. The short‐baseline Global Navigation Satellite System receivers detected smaller‐scale (∼10 km in the ionosphere, ∼100 km in the magnetosphere) TEC gradients and their sunward drift. Fine‐scale density structures were associated with enhanced phase scintillation index. Velocity fluctuations were found to be spatial structures of fine‐scale SAPS flows that drifted sunward with density irregularities down to ∼10 s of meter‐scale. Fine‐scale density structures followed a power law with a slope of ∼−5/3, and smaller‐scale density structures developed slower than the larger‐scale structures. We suggest that turbulent SAPS flows created fine‐scale density structures and their cascading to smaller scales. We also found that the plume fine‐scale density structures were associated with whistler‐mode intensity modulation, and localized electron precipitation in the plume. Structured precipitation in the plume may contribute to ionospheric heating, SAPS velocity reduction, and conductance enhancements.more » « less
An official website of the United States government
